PHYSICAL REVIEW E 71, 061105(2005

Subdiffusion in random compressible flows
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In this work, we study the diffusion of admixture particles in a one-dimensional velocity field given by a
gradient of a random potential. This refers us to the case of random compressible flows, where previously only
scaling estimates were available. We develop a general approach which allows to solve this problem analyti-
cally. With its help we derive the macroscopic transport equation and rigorously show in which cases transport
can be subdiffusive. We find the Fourier-Laplace transform of the Green’s function of this equation and prove
that for some potential distributions it satisfies the subdiffusive equation with fractional derivative with respect
to time.
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I. INTRODUCTION comblike structures, and, in simplified form, to the periodic
o . ) _ . potential case. The contents of this paper is organized in the
Diffusion of particles in a random environment is a gen-f|lowing way. First, we consider the case of a periodic ve-
gral physical problem w_hlch continuously receives attentiono ity field and recover the result of Ré%] on the depletion
in the context of a wide range of phenomena. Variousys the transport. In Sec. Ill, we solve analytically the prob-
anomalougcompared to the classical diffusiptypes of be-  |em of subdiffusion of a passive scalar in a one-dimensional
havior were discovered and investigatdd-4]. Of course,  compressible random velocity field. The averaging procedure
one tries to find a universal language for the description ofng fractional derivative equations are also briefly consid-

such kinds of processes. One of the possibilities is a langreq there. In the last section, we conclude and discuss open
guage of fractional derivatives which have already proved t‘broblems.

be a useful and flexible tool for the description of a number

of stochastic processes. In this paper we employ this lan-

guage to address the question of anomalous diffusion in Il. PERIODIC POTENTIAL

static random compressible flows. The influence of convec- ] ) . o ]
tion on molecular diffusion has been studied in many theo- We Wwill consider the advection-diffusion equation and
retical works(see cited reviews and Refi&,6]). As a rule, first restrict ourselves to the one-dimensional case,
incompressible velocity fields are considered. We should es- on

pecially mention the work of Vergassola and Avellan¢dh — + V (nv) =DAn,

on the scalar transport in compressible flows, which is Jt

closely related to the subject being considered here. Their

work showed that static potential one-dimensional flow can n=n(xt), v=v(x), D=const. 1)

deplete the diffusion due to the trapping of particles, while inThe velocity field is static and its characteristic scale is much

the majority of cases, convection leads to enhanced diffugajier than the scale of the gradients of the macroscopic

sion. The case Ofl random po(’;er:sual,hw_hmh IIS partu_:trj]laér_ly 'N"density of particles. Nontrivial influence of advection on the
teresting, was only mentioned. By their analogy with Sinai's,,icje diffusion could be found even for the simplest case

problem[8] (see also Ref.3]) the authors of Ref.7] antici- of the periodic velocity field) ==V ¢, whereg(x) is a peri-

pated the scaling of the subdiffusion regime. odic potential with period, ¢(x+1)=¢(x). One can bear in

In our work, we show rigorously that, under some condi-__. . 2T -
tions on the velocity potential, transport is subdiffusive. Themlnd the following examplee(x) =blsin(2mx/1) 1], where

analytical expression for the Fourier-Laplace transform oib is the well depth. Equatiofi) can be rewritten in terms of

the Green’s function of the macroscopic transport equation iglow 9.
the central result of this paper. Moreover, for some particular an
classes of velocity distributions, transport is governed by the 0t =-Vaq,

subdiffusion equation with fractional derivative with respect
to time, which means that the exact analytical solution of the
problem in usual time and space coordinates can be found. It q=nv - D@.
is remarkable, that the general method used for this deriva- X

tion is also applicable to the problem of the diffusion on One can find the stationary solution @,

an
* . . . — =0, g=qg=const,
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X
Ng(X) = ( J %esa(y)/D dy) g ¢(x/D )
X0

2a
from which it is easy to see that wells collect an exponential : ! | |
number of particles leaving rarefied regions in between.
Now we will look for small perturbation of the stationary
solution and substitutey, by slow varying (see below
q(x,t),

on
—=-Vqxt). -
P q(x,t)

) ) o FIG. 1. Random potential of the velocity fiele(x).
We will look for the time-dependent solution in the form

X q(y,t) small, compared to the total amount of admixture being
n(xt) = f Te‘”(y)’D dy |e¢¥/P, transported. This leads to the exponential decrease in the
%o diffusion constant.

We are interested in the macroscopic concentration of par-

ticles, which corresponds to the average over several charac-

teristic  lengths (period3 of the potential (n) I1l. DIFFUSION IN A RANDOM VELOCITY FIELD
=(1/L)%H2n(y,t)dy, L>1. Now it is desirable to connect Now consider the case of the random velocity field, given
the gradient of macroscopic density distribution with theby a random potential. We notice from the previous example,

flow q, that the basic property of the potential, which is important

L2 | 2 for transport, is the capacity of wells and the distance be-

dn _d1 qly,t) eID gy | e¢@/Dg tween them, which gives one of the characteristic space
P e y|e z T ) X

X XLy \Jyg scales of the problem. For the simplicity of the intermediate

calculations, we choose a model potential with symmetric
Taking in account the slow variation @f(x,t) on the aver- triangular wells of equal width & separated by equal dis-
aging scalel and the periodic property of the potential we tanced but with random distribution of depths(see Fig. 1

arrive at First, we reformulate the approach, which we have al-
ready implicitly applied for the periodic potential, for the
Kn) _ Q(X,t)( gfL —4(2)ID ) case of the random velocity field. The essential point here is
=——| const + e dz|, (3) . ) . .
X D 0 the separation of the particle$x,t) into two groups, diffus-
ing between the wells(x,t) and wondering inside them
wherea defined as n.(x,t). The concentration of particles, as well as their total
x number inside each weN|,(t), depends on the,(t), taken
f e dy = a(z- 7). on its boundaries, and on the well depth. The idea now is to
294X connect the two concentrations and write the macroscopic

transport equation for the total concentration of particles tak-

The first term in the parentheses (8) is of the order of  jhq into account that only a part of them is actually respon-
unity, whereas the second one is of the order of(lekp) sible for the transport.

dominant. Finally we can write [3,4] when the motion of particles in a fixed but random
An) environment is considered. That is why inevitably we are
xt) =D —~ aced with an averaging procedure, which helps us to pass to
qxt)=D"——, faced with i d hich hel
oX

the macroscopic transport equation.

We have a fixed realizatioh(x) =b(x,) =b, of a random
processwell depthg with the probability distributiorP(b).
There are several ways how to simplify this problem. The
first and the most common is the ensemble averaging, or
The macroscopic transport would still be diffusive but with averaging over the realizations of the random potential. This
an exponentially small(depending on the potential well does not fit our purposes, as we are trying to predict the
depth effective diffusion coefficient. This result was recov- macroscopic dynamics in a fixed sample, but not its statisti-
ered in several previous worksee Refs[3,7]) and it could cal properties. This is why we use another approach which
be anticipated based on the very simple physical picture oihcorporates the “self-averaging” feature of our random vari-
the process. Each potential well is a trap which attracts aable. There are discussions on the different ways of averag-
exponentially large number of particles, but the macroscopiéng [9,10], some of which lead to paradoxical and nonphysi-
transport is only due to the diffusion of particles betweencal results. The method suggested below seems to be natural
these wells, whose population, respectively, is exponentialljrom the physical point of view and correctly recovers all

A _ o ()

0"t axz D* o e—b/D'
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limiting cases. We are looking for the macroscopic dynamics MNulxeo=Ny(t), g=qg(x=a-)+q(x=a+)=0,
on scales reasonably exceeding characteristic potential scale

[. Quantities which are physically important or measured val- an,,
ues would characterize an area of the dizaround pointx q(x=*a)= Fnw+ D—° -
containing a large number of wells, -

Other physically reasonable boundary conditions could be

L N set up as well, but in the calculation of the total number of
f(X) = (1/N)2 f(by), trapped particles they give the same asymptotic result. The
n=0 transport equation in the well itself is
2
whereb, is a subset of the realization of the random process, M + N, = Dﬂv_ (7)
b,, andb, are independent in# k. If N is sufficiently large, at ax?

for the typical realizatiorh, we can write We use the Laplace transform method to solve it. Starting

" from initially empty wells n,(x)|-o=0 we can get the an-
f=| f(b)P(b)db. (4)  swer for the Laplace component of the concentratig., in
0 the left part of the we)l

. o = (v+q)/2D (v-0)/2D = 2
Here we used the law of large numbers. This transition can Np = C1€" +Coe" » q=v4Dp+v”.
also be called self-averaging. Now we can finally state thedne can subtract the stationary solution(df and consider

hierarchy of scales in our problem, only the perturbation to it. In any case what one needs to
know is how fast the well reacts on the change of boundary
| < < X, (5) conditions and how many particles it is able to swallow. The
coefficientsc; and ¢, are found from the boundary condi-
whereL is the averaging window, any is the scale of the tions,
macroscopic change of the concentration of particles. - (q+v)ne, e (y - DNy
: H C = . , = . .
Thus the total concentration can be written as 1 PR L p— 2 ¥, — ) -v-q
N, (N, (%, 1)) Then the total number of particles in the weM,, , is

n(x,t) = ny(x,t) + N, p2D(1 —29P)

g-v+ePu-q)’

a
Ny,p= Zf Ny,p(X)dX= 2
. . 0
But the macroscopic transport is only due to the free par-
ticles n,, that is why in principle it can be slower than clas- As we are interested in the asymptotic behavior for large
sical diffusion, time scales corresponding to smallwe can make the ex-
pansion,

o Pn, av/D
= - n,,D(1-¢€
x e © Ny p = 2—2 ( )

D = nx,pgp(v)- (8)
—v-—(eP+1)p
For the periodic potential we know?2) that N,, is simply v
proportional to then,, but the coefficient of the proportion- |n ordinary time, the expression foxt) is
ality is exponentially big, then frong6) it follows directly

. . . . . 2 /D,
that transport is diffusive but depleted. The situation be- (e®/D — 1)yg v VDE T+

comes entirely different when allowance for the deep wells g(t)=2 /D 1 q
changes the time behavior bf,. We will now consider this . _
case. To follow the rate of the filling and the capacity of the well

We must find the capacity of the wel,(t) as a function ~We impose the constant condition on its boundargs
of time and boundary conditions. To do this analytically, we=0)=n(2a)=n,
have chosen the simplest form of the potential well— n-D b
triangular and symmetric. Then the velocity of particles is N,(f) = —2=(e®/0 — 1)(1 — gD+
equal tov=b/a=const on the left slope andv-on the right v
slope of the well, where and 2 are the depth and width of From the above expression we can see that the filling process
the well, respectivelysee Fig. 1. We choose the left bound- s exponentially slow and the capacity is exponentially big.
ary of the well as an origin for the frame of reference. At theThis is the crucial feature of the system. Each well represents
left (x=0) and right(x=2a) boundary, the concentration of gz trap which swallows almost all particles approaching it. In
particles in the welln,, is equal ton,(t) (variation of the principle, it can terminate all transport. This is the specific
macroscopic concentration on the size of the well is negliside of the quenched disordécompared to the annealed
gible), in the center of the wellx=a) we set the zero flow one. Once a realization of the potential with one extremely
condition because of the symmetry of the problem, deep well is given, it would collect all of the particles and no
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transport would be possible. This property is hidden in Eqg. No AP
(4), when we pass from the sum to the integral we use the pk = (\p®+ DK?)’
. ; o p
notion of typical realization of the random process and con-
vergence in the probabilistic sense. The question of conver- > 2\ a-1
. ) ; . X a a
gence for exponential fluctuations is particularly delicate and a<l, \= T csq (1l - a)]( ) . (19

requires additional mathematical treatment in the context of D

quenched disorder phenomena. Meanwhile we leave thighis formula gives the analytical solution of the problem. It
problem for future investigations. o is remarkable thatl4) represents a standard form of writing
_ Nevertheless if one assumes that the distribution of depthgn anomalous diffusion equation with fractional derivatives
is decaying fast enough to prevent the appearance of ey Fourier-Laplace spacfl1-13. Transforming it back to
tremely deep wells, one can proceed with calculating macropgrmal space and time coordinates we obtain
scopic transport equations according to the suggested ap-
proach. o _D#n L Mo

Moving onto the macroscopic description we perform the g N xE ot
averaging of(8) [scaling relations(5) should be kept in
mind] with a distribution function of depths of wellf&(b)
[f(v)] and find its asymptotic at smallor larget. We choose
f(b) in the form

(15

Complete information about anomalous diffusion equations
in fractional derivatives, their properties, solutions and appli-
cations can be found in a number of excellent reviews
[2,11,14,15%. Subdiffusion equations are of particular interest
—ablD because in fewer cases they can be rigorously derived from

A _be™” (9) the underlying physical problem. In addition to those being

D?(1 +b/D)~’ discussed in the current paper, Rg#,16—1§ should also

be noted in this connection. We will mention here only the

whereA(a, B) is a normalizing factor. The averaging integral basic features of15) [12,13. The solution of(15) has self-
reads similar form

1 X
® _ 1\a—aX 2 G(r,t) = a—q)<a—> . (16)
2a f (e"az be o ’:X) Sx. (10 t2 e

0 x2+—p(ex+ 1) This self-similarity, which in general drastically simplifies
D the problem, here is self-attracting. It means that for any

initial distribution after some time the profile of the Green'’s
In casea>1 deep wells are suppressed and the transport, §gnction of the equation would be formed. The spreading of
we showed before, is purely diffusive. But far<1 the  {ne cloud is governed by slower than classical diffusion scal-
abO\{e integral dlvergc_es gstends to zero due to the expo- ing law x=t%2. Here the question of memory effects arises
nential growth of the integrand at large The accurate cal- [19). Besides obvious memory included in the nonlocal time

culation of thep asymptotic of this integral is quite a delicate gerjyative operatofwhich is a convolution type integral with

problem and we do it in a detailed manner in the Appendix,g power law functiohy there exists a strong dependence on

which gives us the following result: the initial condition. One can easily check tt{a6) does not
possess the semigroup property or, in other words, breaks the
-0 ple d (11) continuity of the evolution. It was shown in RdfL9] that
%= Inf*2a=D p ) only by taking into account microscopic details of the trans-

port, one can have a complete and exact description of the
ChoosingB=2(1-) one can have purely fractional power probl_em._ M_ore(_)ver, by s_pecial chpice of the initial_ micro-
law divergence at sma. scopic cystrlbutlon evolution can d_n‘fer.fror.@iS) on micro-
Now it is the right time to remember Ed6). After scopic times. In _the ca_s&l-:‘.of t.h.e diffusion in a random com-
Laplace and Fourier transformation with respect to time and®'€ssible flow, it is the initial filling of wells which plays the
coordinatex, respectively(6) reads role of_m|crod|str|bu_t|on_. That_ls W_h_y setting them to be
empty in the beginning is a quite critical assumption.
For the general cagether possible values @ in (9) and
(11)], evolution is still subdiffusive and its Green’s function
) can be found in the spirit of14) with a more complicated
From (8) we know the connection between total number of s aly logarithmi¢ dependence op, although it cannot be
particles and the concentration on its boundaries, thus represented in the language of fractional derivatives,

PNk = No == k2D . (12)

_ nOk(l +gp/l)
Npk= 27
[p(1+gy/l) + Dk?]
whereg is given by(11). Combining(12) and (13) we ob-  whereg, is given by the average 8). Thus for any given

tain the answer for the Fourier-Laplace transform of the conwvelocity distribution the problem reduces to the calculation
centration of particles, of the averag€8) and inverse Fourier-Laplace transform of

Nep=Neip + Nugll =M1+, (13) w
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(17) which, with a power of modern numerical techniques, isGrant No. 436 RUS 113/779/0-1. One of the authors

not at all difficult. (V.Yu.Z.) appreciates the hospitality and financial support of
It should be noted, that the approach developed and usédPI for Dynamics and Self-Organization in Goettingen.

in this paper can be successfully applied to the problem of

the diffusion on comblike structurd®,10,16,20-2B It al- APPENDIX

lows to derive macroscopic equations in a natural way as

well as to establish a connection to the continuous time ran- To estimate(10) we note thaix? in the nominator allows

dom walk mode[15]. The results perfectly reproduce recentus to replaces*—1— €* without creating discontinuity in 0

theoretical workg9,22] and numerical simulationsl0], but  [this convenience is the reason for the choice of the distribu-

the more detailed description of this topic is beyond thetion function(9)]. We also substitute*+1— €%,

scope of this paper.
P pap o0 exe—ax X2 e foc e—ax X2

- = dx,
IV. CONCLUSIONS o X+pe(l+x)P o X2eX+p’ (1+x)”P

We have proposed a simple approach, which is based ofhere p’=(a’p/D)—0. By the change of variabley
the separation of particles into two classes, resting and wan=e*/p’ it is converted to
dering in traps(wells of the potential of the velocity field
and working as carriers in between resting points, which (=) ' yleD In?(p’y)
drive the transport of the whole population of both classes. P o yInA(p'y)+1[1-1In(p'y)]? y-
Capability of traps to accept and accommodate particles
plays the essential role in the overall transport. The analyticalrhe asymptotic of this integral at smallis determined by a
solution for this problem was found in terms of the Fouriersmall region in the vicinity of 0. Let us split it into two parts
Laplace transform of the Green’s function of the effective
transport equation. It was shown that random potential field | = fllp' _ fp’ fl’p/ _

o . . = = + =l +1,.

of velocities can lead not only to the depletion of the diffu- 0 o o
sion, but also to the slower subdiffusion behavior with dif-
ferent self-similarityx«t?, 0<y<1/2. In these cases, the Then, in the first integral, we can neglectdhcompared to
transport can be described in terms of fractional derivativdny and vice versa in the second,
equations. We believe that using the language of fractional _ (a=1) 5 ) (a=1) 5
derivatives, which naturally appear in various physical prob- fp y In“ydy + fllp y In“ p'dy
lems, significantly simplifies them and visualizes their solu- J, yIn?y+1(1-Iny)? o yin?p’ +1(1-Inp")#’
tions and properties. It was also noted that the averaging
procedure and results obtained with its help, should be reThe first integral is obviously small @(p). Introducing a
ferred to the real experimental conditions carefully. To thevariablez=y In? p’ we can rewrite, in the following way:
best of our knowledge, the mathematical side of this proce- | (1) n2(ima) mr o (a-1)
dure in the context of the quenched disorder was scarcely J'” PPz InT T p - 1 2 dz
investigated and remains an open problem. ‘e Z+1(1=Inp’)# Inf*2aDp | z+1

p

_—mwcesGm(a—1)]
- Inﬁ+2(a—l) p/ '
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